Redefining climate regions in the United States of America using satellite remote sensing and machine learning for public health applications.

نویسندگان

  • Alexander Liss
  • Magaly Koch
  • Elena N Naumova
چکیده

Existing climate classification has not been designed for an efficient handling of public health scenarios. This work aims to design an objective spatial climate regionalization method for assessing health risks in response to extreme weather. Specific climate regions for the conterminous United States of America (USA) were defined using satellite remote sensing (RS) data and compared with the conventional Köppen-Geiger (KG) divisions. Using the nationwide database of hospitalisations among the elderly (≥65 year olds), we examined the utility of a RS-based climate regionalization to assess public health risk due to extreme weather, by comparing the rate of hospitalisations in response to thermal extremes across climatic regions. Satellite image composites from 2002-2012 were aggregated, masked and compiled into a multi-dimensional dataset. The conterminous USA was classified into 8 distinct regions using a stepwise regionalization approach to limit noise and collinearity (LKN), which exhibited a high degree of consistency with the KG regions and a well-defined regional delineation by annual and seasonal temperature and precipitation values. The most populous was a temperate wet region (10.9 million), while the highest rate of hospitalisations due to exposure to heat and cold (9.6 and 17.7 cases per 100,000 persons at risk, respectively) was observed in the relatively warm and humid south-eastern region. RS-based regionalization demonstrates strong potential for assessing the adverse effects of severe weather on human health and for decision support. Its utility in forecasting and mitigating these effects has to be further explored.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of different algorithms for land use mapping in dry climate using satellite images: a case study of the Central regions of Iran

The objective of this research was to determine the best model and compare performances in terms of producing landuse maps from six supervised classification algorithms. As a result, different algorithms such as the minimum distance ofmean (MDM), Mahalanobis distance (MD), maximum likelihood (ML), artificial neural network (ANN), spectral anglemapper (SAM), and support vector machine (SVM) were...

متن کامل

Evaluation of remote sensing indicators in drought monitoring using machine learning algorithms (Case study: Marivan city)

Remote sensing indices are used to analyze the Spatio-temporal distribution of drought conditions and to identify the severity of drought. This study, using various drought indices generated from Madis and TRMM satellite data extracted from Google Earth Engine (GEE) platform. Drought conditions in Marivan city from February to November for the years 2001 to 2017 were analyzed based on spatial a...

متن کامل

Distribution map of the different lithologic units in loess plateau of eastern Golestan by using remote sensing technique; Aghband research area

Introduction: Along with the climate, Soil is an essential natural resource. Although soil studies in Iran have been started more than 50 years ago, the soil map of the country has not been fully prepared yet, and only 20-25% of the lands have been mapped already. Many soil maps of Iran need to be updated, but the common methods in soil mapping are costly and time-consuming. Hence, using data o...

متن کامل

Evaluating machine learning methods and satellite images to estimate combined climatic indices

The reflections recorded on satellite images have been affected by various environmental factors. In these images, some of these factors are combined with other environmental factors that cannot be distinguished. Therefore, it seems wise to model these environmental phenomena in the form of hybrid indicators. In this regard, satellite imagery and machine learning methods can play a unique role ...

متن کامل

Introducing Satellite Remote Sensing Systems and its Application in Archaeology Case Study: Behshahr Plain- Mazandaran

Human groups have considered the Behshahr plain of Mazandaran in the past Due to its particular geographical shape, location between the Caspian Sea and mountains, and the existence of some rivers in the region. However, our knowledge of this area is limited to several published surveys and archaeological investigation of its ancient sites. No detailed research has conducted on the formation of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Geospatial health

دوره 8 3  شماره 

صفحات  -

تاریخ انتشار 2014